Introduction to Deep Learning

Greg Tsagkatakis

ICS - FORTH

Machine Learning

Play Video

https://www.youtube.com/watch?v=f_uwKZIAeM0

Agenda

Lecture #1

- Introduction
- Supervised Deep Learning

Lecture #2

- Unsupervised Deep Learning
- Deep Reinforcement learning

The growth in data as seen by United Nations Economic Commission for Europe.

The 5Vs

➢ Volume

> Velocity

Source: Cloudera

Note: Shaded gray area indicates the race is too close to call.

Sources: USC Dornsife/LA Times Presidential Election Daybreak Poll

BD & Healthcare The Power of Healthcare Data The Body as a Source of **Big Data** Manute Who Th. 3D MRI 150MB data beyond the desktop aggin approximately 3GB 1010/10 1010101 X-RAY 30MB . 3D CT SCAN 1GB 0.5MB It is estimated that by There are currently 2015, the average hospital 425K will generate telebealth providers in the U.S. **665TB** of data systems) applications were reason for Common uses of health care analytics: More accurate diagnoses, streamlining growth at 63 the cost of care, revenue reimbursement followed by files held in the electronic outcomes and business analysis to manage populations health record (54 percent) and scanned (51 percent)* The Medicare and Medicaid Electronic Includes a measure for recording imaging results via certified EHR technology.* 36.6N hospitals, according to the Am Today. Medical image archives are increasing by 20-40% , video and email.¹ NetApp

Big Data & Genetics

Cumulative Number of Human Genomes

Growth of DNA Sequencing

Year

10

Big Data & Astrophysics

Astronomy & Astrophysics

Sky Survey Project	Volume	Velocity	Variety
Sloan Digital Sky Survey (SDSS)	50 TB	200 GB per day	lmages, redshifts
Large Synoptic Survey Telescope (LSST)	~ 200 PB	10 TB per day	lmages, catalogs
Square Kilometer Array (SKA)	~ 4.6 EB	150 TB per day	lmages, redshifts

Astrophysics and Big Data: Challenges, Methods, and Tools. Mauro Garofalo, Alessio Botta, and Giorgio Ventre.

Handling Big Data

Machine Learning + Big Data -> Data science

Source: https://s3.amazonaws.com/aws.drewconway.com/viz/venn_diagram/data_science.html

Big Data & the Brain

Human Visual System

© Stephen E. Palmer, 2002

DEEP HIERARCHIES IN THE VISUAL SYSTEM LOCATION FEATURE RECEPTIVE FIELD SIZE ** RETINA PHOTORECEPTOR 11112 **GANGLION CELL** $\mathbf{O} \bullet$ LGN THALAMUS LATERAL GENICULATE NUCLEUS SIMPLE CELL V1 COMPLEX CELL V2 TEXTURE-DEFINED ILLUSORY BORDER CONTOURS OWNERSHIP CONTOURS (V3) V4 100 CURVATURE LUMINANCE-INVARIANT SELECTIVITY HUE VENTRAL PATHWAY DORSAL PATHWAY インゴ TEO KX K X SIMPLE SHAPE ELEMENTS ANALYSIS OF SPACE ¥ @ **ACTION PLANING** TE **COMPLEX FEATURE** CONFIGURATIONS

How does the Brain do it?

10¹¹ neurons

10¹⁴-10¹⁵ synapses

Figure 1.11

(Coodfellow 2016)

Artificial Neural Networks

Brief history of DL

Brief History of Neural Network

DEVIEW 2015

Why Today?

Lots of Data

Why Today?

Lots of Data

Deeper Learning

Why Today?

Lots of Data

Deep Learning

More Power

50X BOOST IN DEEP LEARNING IN 3 YEARS 60 M40 + cuDNN4 50 M40 + cuDNN3 Caffe Performance 40 30 20 K40 + cuDNN1 K40 10 CPU 0 11/2013 9/2014 7/2015 12/2015 AlexNet training throughput based on 20 iterations, CPU: 1x E5-2680v3 12 Core 2.5GHz, 128GB System Memory, Ubuntu 14.04

https://blogs.nvidia.com/blog/2016/01/12/acceleratingai-artificial-intelligence-gpus/ https://www.slothparadise.com/what-is-cloudcomputing/

Apps: Gaming

Apps: Self-driving cars

https://www.youtube.com/watch?v=VG68SKoG7vE

Intro to ML

Types of Machine Learning

Supervised learning: present example inputs and their desired outputs (labels) \rightarrow learn a general rule that maps inputs to outputs.

Types of Machine Learning

Unsupervised learning: no labels are given \rightarrow find structure in input.

Types of Machine Learning

Reinforcement learning: system interacts with environment and must perform a certain goal without explicitly telling it whether it has come close to its goal or not.

observation

Feature extraction in ML

Feature learning

Learning Algorithm

Feature learning

Fundamentals of ANN

Key components of ANN

> Architecture (input/hidden/output layers)

Key components of ANN

> Architecture (input/hidden/output layers)

> Weights

Key components of ANN

> Architecture (input/hidden/output layers)

> Weights

Activations

Perceptron: an early attempt

Activation function

$$\hat{f}(x) = \sigma(w \cdot x + b) \quad \sigma(y) = \begin{cases} 1, & y > 0\\ 0, & o/w \end{cases}$$

Need to tune w and b

Multilayer perceptron

A mostly complete chart of

Training & Testing

Training: determine weights

- Supervised: labeled training examples
- Unsupervised: no labels available
- Reinforcement: examples associated with rewards

Testing (Inference): apply weights to new examples

Training DNN

- 1. Get batch of data
- 2. Forward through the network -> estimate loss
- 3. Backpropagate error
- 4. Update weights based on gradient

BackPropagation

Chain Rule in Gradient Descent: Invented in 1969 by Bryson and Ho

Defining a loss/cost function

Assume a function
$$J(x,y;\theta) = \frac{1}{2}\sum(y - f(x;\theta))^2$$

 $f(x;\theta) = w^T x + b$, $\theta = \{w,b\}$

-3

-2

-1

0

2

3

Gradient Descent

Visualization

Training Characteristics

References

Stephens, Zachary D., et al. "Big data: astronomical or genomical?." *PLoS biology* 13.7 (2015): e1002195.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." *Nature* 521.7553 (2015): 436-444.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.

Kietzmann, Tim Christian, Patrick McClure, and Nikolaus Kriegeskorte. "Deep Neural Networks In Computational Neuroscience." *bioRxiv* (2017): 133504.

Introduction to Deep Learning

Greg Tsagkatakis

ICS - FORTH

Fundamentals of ANN

Key components of ANN

> Architecture (input/hidden/output layers)

Key components of ANN

> Architecture (input/hidden/output layers)

> Weights

Key components of ANN

> Architecture (input/hidden/output layers)

> Weights

Activations

Perceptron: an early attempt

Activation function

$$\hat{f}(x) = \sigma(w \cdot x + b) \quad \sigma(y) = \begin{cases} 1, & y > 0\\ 0, & o/w \end{cases}$$

Need to tune w and b

Multilayer perceptron

A mostly complete chart of

Training & Testing

Training: determine weights

- Supervised: labeled training examples
- Unsupervised: no labels available
- Reinforcement: examples associated with rewards

Testing (Inference): apply weights to new examples

Training DNN

- 1. Get batch of data
- 2. Forward through the network -> estimate loss
- 3. Backpropagate error
- 4. Update weights based on gradient

BackPropagation

Chain Rule in Gradient Descent: Invented in 1969 by Bryson and Ho

Defining a loss/cost function

Assume a function
$$J(x,y;\theta) = \frac{1}{2}\sum(y - f(x;\theta))^2$$

 $f(x;\theta) = w^T x + b$, $\theta = \{w,b\}$

-3

-2

-1

0

2

3

Gradient Descent

BackProp

Given: $\boldsymbol{y} = g(\boldsymbol{u})$ and $\boldsymbol{u} = h(\boldsymbol{x})$. Chain Rule: $\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$

BackProp

Chain rule:

• Single variable

• Multiple variables

 $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}.$ $\frac{\partial z}{\partial x_i} = \sum_{i} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}.$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 12

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$
 $q = x + y$ $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Lecture 4 - 13

Lecture 4 - 14

Lecture 4 - 16

Lecture 4 - 18

Lecture 4 - 20

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 21

Visualization

Training Characteristics

Supervised Learning

Supervised Learning

Data Model Labels Prediction

Exploiting prior knowledge

Expert users

- Crowdsourcing
- > Other instruments

Support Vector Machines

Binary classification

Support Vector Machines

- Binary classification
- Kernels <-> non-linearities

Support Vector Machines

- Binary classification
- Kernels <-> non-linearities

Random Forests

Multi-class classification

Support Vector Machines

- Binary classification
- Kernels <-> non-linearities

Random Forests

- Multi-class classification
- Markov Chains/Fields
 - Temporal data

State-of-the-art (since 2015)

Deep Learning (DL)

Convolutional Neural Networks (CNN) <-> Images

Recurrent Neural Networks (RNN) <-> Audio
Convolutional Neural Networks

(Convolution + Subsampling) + () ... + Fully Connected

Convolutional Layers

Convolutional Layers

Characteristics

- Hierarchical features
- Location invariance

Parameters

- > Number of filters (32,64...)
- Filter size (3x3, 5x5)
- Stride (1)
- Padding (2,4)

"Machine Learning and AI for Brain Simulations" – Andrew Ng Talk, UCLA, 2012

Subsampling (pooling) Layers

<-> downsampling

Scale invariance

Parameters

- Type
- Filter Size
- Stride

Activation Layer

Introduction of non-linearity

• Brain: thresholding -> spike trains

Tanh (Hypertangent)

Gaussian

 $\mathit{gaussian}(x) = e^{-x^2/\sigma^2}$

Activation Layer

ReLU: x=max(0,x)

- Simplifies backprop
- Makes learning faster
- Avoids saturation issues
 - ~ non-negativity constraint

(Note: The brain)

Fully Connected Layers

Full connections to all activations in previous layer

Typically at the end

Can be replaced by conv

LeNet [1998]

AlexNet [2012]

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, <u>ImageNet ILSVRC challenge</u> in 2012 http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

VGGnet [2014]

K. Simonyan, A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv technical report, 2014

VGGnet

		ConvNet C	onfiguration		
A	A-LRN	B	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224 × 2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
0000000000		pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
		soft	-max		

D: VGG16 E: VGG19 All filters are 3x3

More layers smaller filters

Inception (GoogLeNet, 2014)

Inception module with dimensionality reduction

Residuals

ResNet, 2015

He, Kaiming, et al. "Deep residual learning for image recognition." IEEE CVPR. 2016.

Training protocols

Fully Supervised

- Random initialization of weights
- Train in supervised mode (example + label)

Unsupervised pre-training + standard classifier

- Train each layer unsupervised
- Train a supervised classifier (SVM) on top

Unsupervised pre-training + supervised fine-tuning

- Train each layer unsupervised
- Add a supervised layer

Dropout

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." *Journal of machine learning research*15.1 (2014): 1929-1958.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

Transfer Learning

Transfer Learning

Layer Transfer - Image

ImageNET

- Images gathered from Internet
- Human labels via Amazon MTurk
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC):
 - 1.2 million training images, 1000 classes

Summary: ILSVRC 2012-2015

Team	Year	Place	Error (top-5)	External data
(AlexNet, 7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16 layers)	2014	2nd	7.32%	no
GoogLeNet (19 layers)	2014	1st	6.67%	no
ResNet (152 layers)	2015	1st	3.57%	
Human expert*			5.1%	

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Skin cancer detection

The Galaxy zoo challenge

Online crowdsourcing project where users describe the morphology of galaxies based on color images 1 million galaxies imaged by the Sloan Digital Sky Survey (2007)

Dieleman, S., Kyle W. W., and Joni D.. "Rotation-invariant convolutional neural networks for galaxy morphology prediction." Monthly notices of the royal astronomical society, 2015

Component

CNN & FMRI

Demos

https://www.clarifai.com/demo

Different types of mapping

Recurrent Neural Networks

Motivation

Feed forward networks accept a fixed-sized vector as input and produce a fixed-sized vector as output

> fixed amount of computational steps

Frecurrent nets allow us to operate over sequences of vectors

Use cases

Video

> Audio

> Text

RNN Architecture

Unfolding RNNs

 \succ Each node represents a layer of network units at a single time step.

 \succ The same weights are reused at every time step.

Multi-Layer Network Demo

http://playground.tensorflow.org/