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Machine Learning
Play Video

https://www.youtube.com/watch?v=f_uwKZIAeM0
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Agenda
Lecture #1
◦ Introduction

◦ Supervised Deep Learning

Lecture #2
◦ Unsupervised Deep Learning

◦ Deep Reinforcement learning
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Big Data
The 5Vs
Volume

4



Big Data
The 5Vs
Volume

Velocity

5



Big Data
The 5Vs
Volume

Velocity

Variety

6



Big Data
The 5Vs
Volume

Velocity

Variety

Veracity

7



Big Data
The 5Vs
Volume

Velocity

Variety

Veracity

Value

8



BD & Healthcare
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Big Data & Genetics
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Big Data & Astrophysics
Astronomy & Astrophysics

Sky Survey Project Volume Velocity Variety

Sloan Digital Sky Survey (SDSS) 50 TB 200 GB per 
day

Images, 
redshifts

Large Synoptic Survey Telescope 
(LSST ) 

~ 200 PB 10 TB per day Images, 
catalogs

Square Kilometer Array (SKA ) ~ 4.6 EB 150 TB per day Images, 
redshifts

Astrophysics and Big Data: Challenges, Methods, and Tools. Mauro Garofalo, Alessio Botta, and Giorgio Ventre.
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Handling Big Data
Machine Learning + Big Data -> Data science
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Big Data &the Brain
Human Visual System
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How does the Brain do it?
1011 neurons

1014-1015 synapses
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Artificial Neural Networks
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Brief history of DL
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Why Today?
Lots of Data
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Why Today?
Lots of Data

Deeper Learning
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Why Today?
Lots of Data

Deep Learning

More Power

https://blogs.nvidia.com/blog/2016/01/12/accelerating-
ai-artificial-intelligence-gpus/
https://www.slothparadise.com/what-is-cloud-
computing/
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Apps: Gaming
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Apps: Self-driving cars

https://www.youtube.com/watch?v=VG68SKoG7vE
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Intro to ML
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Types of Machine Learning
Supervised learning: present example inputs and their
desired outputs (labels) → learn a general rule that maps
inputs to outputs.
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Types of Machine Learning
Unsupervised learning: no labels are given → find structure
in input.
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Types of Machine Learning
Reinforcement learning: system interacts with environment
and must perform a certain goal without explicitly telling it
whether it has come close to its goal or not.
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Feature extraction in ML

Image Low-level  

vision features

(edges, SIFT, HOG, etc.)

Object detection

/ classification

Input data  
(pixels)

Learning
Algorithm
(e.g., SVM)

feature  
representation  
(hand-crafted)

Features are not learned
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Fundamentals of 
ANN
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Key components of ANN
 Architecture (input/hidden/output layers)
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Key components of ANN
 Architecture (input/hidden/output layers)

 Weights
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Key components of ANN
 Architecture (input/hidden/output layers)

 Weights

 Activations
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LINEAR (ReLU)
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SIGMOIDAL / TANH



Perceptron: an early attempt

Activation function

Need to tune       and   

σ

x1

x2

…

b

w1

w2

1
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Multilayer perceptron

w1

w2

w3

A

B

C

D

E

A neuron is of the form  

σ(w.x + b) where σ is 

an activation function

We just added a 
neuron layer!

We just introduced 
non-linearity!

w1A

w2B

w1D

wAE

wDE
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Sasen Cain (@spectralradius)

https://twitter.com/spectralradius


Training & Testing
Training: determine weights
◦ Supervised: labeled training examples

◦ Unsupervised: no labels available

◦ Reinforcement: examples associated with rewards

Testing (Inference): apply weights to new examples
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Training DNN
1. Get batch of data

2. Forward through the network -> estimate loss

3. Backpropagate error

4. Update weights based on gradient

Errors
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BackPropagation
Chain Rule in Gradient Descent: Invented in 1969 by Bryson and Ho

Defining a loss/cost function 

Assume a function 

Types of Loss function

•Hinge 

•Exponential

•Logistic
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Gradient Descent
Minimize function J w.r.t. parameters θ

 Gradient 

 Chain rule

39

New weights Gradient

Old weights Learning rate



Visualization
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Training Characteristics
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Under-fitting

Over-fitting
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Key components of ANN
 Architecture (input/hidden/output layers)

 Weights

 Activations
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Perceptron: an early attempt

Activation function
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w1

w2

w3

A

B

C

D

E

A neuron is of the form  

σ(w.x + b) where σ is 

an activation function

We just added a 
neuron layer!

We just introduced 
non-linearity!

w1A

w2B

w1D

wAE

wDE

7



8

Sasen Cain (@spectralradius)
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Training & Testing
Training: determine weights
◦ Supervised: labeled training examples

◦ Unsupervised: no labels available

◦ Reinforcement: examples associated with rewards

Testing (Inference): apply weights to new examples
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Training DNN
1. Get batch of data

2. Forward through the network -> estimate loss

3. Backpropagate error

4. Update weights based on gradient

Errors
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BackPropagation
Chain Rule in Gradient Descent: Invented in 1969 by Bryson and Ho

Defining a loss/cost function 

Assume a function 

Types of Loss function

•Hinge 

•Exponential

•Logistic
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Gradient Descent
Minimize function J w.r.t. parameters θ

 Gradient 

 Chain rule
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New weights Gradient

Old weights Learning rate



BackProp
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Chain Rule:

Given: 

…



BackProp

Chain rule:

◦ Single variable

◦ Multiple variables
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g fx
y=g(x)

z=f(y)=f(g(x))



15



16



17



18



19



20



21



Visualization
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Training Characteristics
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Under-fitting

Over-fitting



Supervised 
Learning
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Supervised Learning

Exploiting prior knowledge

 Expert users

 Crowdsourcing

 Other instruments

Spiral

Elliptical

?

25

Model
Prediction

Data 
Labels



State-of-the-art (before Deep Learning)
Support Vector Machines
 Binary classification
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State-of-the-art (before Deep Learning)
Support Vector Machines
 Binary classification

 Kernels <-> non-linearities
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State-of-the-art (before Deep Learning)
Support Vector Machines
 Binary classification

 Kernels <-> non-linearities

Random Forests
 Multi-class classification
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State-of-the-art (before Deep Learning)
Support Vector Machines
 Binary classification

 Kernels <-> non-linearities

Random Forests
 Multi-class classification

Markov Chains/Fields 
 Temporal data
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State-of-the-art (since 2015)
Deep Learning (DL)

Convolutional Neural Networks (CNN) <-> Images

Recurrent Neural Networks (RNN) <-> Audio
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Convolutional Neural Networks

(Convolution  + Subsampling) + ()    …             + Fully Connected
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Convolutional Layers

channels

h
ei

gh
t

32x32x1 Image

5x5x1 filter

h
ei

gh
t

28x28xK activation map

K filters

32



Convolutional Layers
Characteristics

 Hierarchical features

 Location invariance

Parameters

 Number of filters (32,64…)

 Filter size (3x3, 5x5)

 Stride (1)

 Padding (2,4)

“Machine Learning and AI for Brain Simulations” –
Andrew Ng Talk, UCLA, 2012
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Subsampling (pooling) Layers

34

<-> downsampling

 Scale invariance

Parameters

• Type

• Filter Size

• Stride



Activation Layer
Introduction of non-linearity

◦ Brain: thresholding -> spike trains
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Activation Layer
ReLU: x=max(0,x)

 Simplifies backprop

 Makes learning faster

 Avoids saturation issues

 ~ non-negativity constraint

(Note: The brain)

No saturated gradients
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Fully Connected Layers
Full connections to all activations in previous layer

Typically at the end

Can be replaced by conv
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LeNet [1998]
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AlexNet [2012]

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, ImageNet ILSVRC challenge in 2012
http://vision03.csail.mit.edu/cnn_art/data/single_layer.png
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http://www.image-net.org/challenges/LSVRC/2014/


K. Simonyan, A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition,  
arXiv technical report, 2014

VGGnet [2014]
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VGGnet

D: VGG16
E: VGG19
All filters are 3x3

More layers 
smaller filters
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Inception (GoogLeNet, 2014)

Inception moduleInception module with dimensionality reduction
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Residuals
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ResNet, 2015
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He, Kaiming, et al. "Deep residual learning for image recognition." IEEE CVPR. 2016.



Training protocols
Fully Supervised
• Random initialization of weights

• Train in supervised mode (example + label)

Unsupervised pre-training + standard classifier
• Train each layer unsupervised

• Train a supervised classifier (SVM) on top

Unsupervised pre-training + supervised fine-tuning
• Train each layer unsupervised

• Add a supervised layer
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Dropout
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Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of 
machine learning research15.1 (2014): 1929-1958.



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015] 47

http://arxiv.org/pdf/1502.03167v3.pdf


Transfer Learning
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Transfer Learning
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Layer Transfer - Image

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, “How 
transferable are features in deep neural networks?”, NIPS, 2014

Only train the 
rest layers

fine-tune the 
whole network

Source: 500 classes 
from ImageNet 

Target: another 500 
classes from ImageNet 



ImageNET

  

Validation classification

  

Validation classification

  

Validation classification

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC): 
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/
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http://www.image-net.org/challenges/LSVRC/


Summary: ILSVRC 2012-2015

Team Year Place Error (top-5) External data

(AlexNet, 7 layers) 2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

Clarifai – NYU (7 layers) 2013 - 11.7% no

Clarifai 2013 1st 11.2% ImageNet 22k

VGG – Oxford (16 layers) 2014 2nd 7.32% no

GoogLeNet (19 layers) 2014 1st 6.67% no

ResNet (152 layers) 2015 1st 3.57%

Human expert* 5.1%

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with 
deep neural networks." Nature 542.7639 (2017): 115-118.

Skin cancer detection
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The Galaxy zoo challenge

54

Online 
crowdsourcing 
project where 
users describe the 
morphology of 
galaxies based on 
color images 1 
million galaxies 
imaged by the 
Sloan Digital Sky 
Survey (2007)



Dieleman, S., Kyle W. W., and Joni D.. "Rotation-invariant convolutional neural networks for 
galaxy morphology prediction." Monthly notices of the royal astronomical society, 2015
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Component
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CNN & FMRI
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Demos
https://www.clarifai.com/demo
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Different types of mapping

Image 
classification

Image 
captioning

Sentiment 
analysis

Machine 
translation

Synced sequence(video 
classification)
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Recurrent Neural Networks
Motivation

Feed forward networks accept a fixed-sized vector as input and 
produce a fixed-sized vector as output

fixed amount of computational steps

recurrent nets allow us to operate over sequences of vectors

Use cases

 Video

 Audio

 Text
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RNN Architecture

Output

DelayHidden Units

Inputs

𝑥(𝑡)

𝑠(𝑡)

𝑠(𝑡 − 1)

o(𝑡)

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑈

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑉
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Unfolding RNNs
Each node represents a layer of network units at a single time step. 

The same weights are reused at every time step. 
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Multi-Layer Network Demo

http://playground.tensorflow.org/
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http://playground.tensorflow.org/

